死在火星上

《死在火星上》

对火星轨道变化问题的最后解释

上一章 简介 下一页
最新网址:m.wushuzw.info

Weutilizeasecond-orderWisdom–Holmansymplecticmapasourmainintegrationmethod(Wisdom&HolmanKinoshita,Yoshida&Nakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(Saha&Tremaine1992,1994).

Thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(N±1,2,3),whichisabout1/11oftheorbitalperiodoftheinnermostplanet(Mercury).Asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinSussman&Wisdom(1988,7.2d)andSaha&Tremaine(1994,225/32d).Weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-elationtothis,Wisdom&Holman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,1/10.irresultseemstobeaccurateenough,ever,sincetheeccentricityofJupiter(?0.05)ismuchsmallerthanthatofMercury(?0.2),weneedsomecarewhenweparetheseintegrationssimplyintermsofstepsizes.

Intheintegrationoftheouterfiveplanets(F±),wefixedthestepsizeat400d.

以下是文章内容:

Long-termintegrationsandstabilityofplanetaryorbitsinourSolarsystem

Abstract

Ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(Laskar198,Laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofMercuryandMarsonatime-scaleofseveral109yr(Laskar1996).TheresultsofLaskar‘ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.

Inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5xtotalelapsedtimeforallintegrationsismorethan5yr,ofthefundamentalconclusionsofourlong-termintegrationsisthatSolarsystemplanetarymotionseemstobestableintermsoftheHillstabilitymentionedabove,atleastoveratime-spanof±ually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbytheHillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,cethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-readerswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofDelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.

InSection2webrieflyexplainourdynamicalmodel,tion3isdylong-termstabilityofSolarsystemplantion4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-ection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5xection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause.

Wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-ickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-oserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,behaviouroftheeccentricityofMercuryinourintegrationsisqualitativelysimilartotheresultsfromJacquesLaskar‘ssecularperturbationtheory(e.x?0.35over?±4Gyr).However,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-avealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5xresultindicatesthatthethreemajorresonancesintheNeptune–Plutosystemhavebeenmaintainedoverthe1011-yrtime-span.

1Introduction

1.1Definitionoftheproblem

ThequestionofthestabilityofourSolarsystemhasbeendebatedoverseveralhundredyears,problemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-ever,wedonotyethaveasispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofourSolarsystem.

Amongmanydefinitionsofstability,hereweadopttheHilldefinition(Gladman1993):actuallythisisnotadefinitionofstability,efineasystemasbeingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(Chambers,Wetherill&BossIto&Tanikawa1999).AsystemisdefinedasexperiencingacloseencounterwceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofourSolarsystem,about±identally,thisdefinitionmaybereplacedbyoneinwhichanoccurrsisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(Yoshinaga,Kokubo&Makino1999).OfcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheNeptune–Plutosystem.

2Descriptionofthenumericalintegrations

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

2.3Numericalmethod

WeadoptGauss‘fandgfunctionsinthesy

(本章未完,请点击下一页继续阅读)

对火星轨道变化问题的最后解释 (第1/3页)

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”

那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书BUG一大堆,用初高中物理在书中挑刺的人也不少。

1.2Previousstudiesandaimsofthisresearch

Inadditiontothevaguenessoftheconceptofstability,theplanetsinourSolarsystemshowacharactertypicalofdynamicalchaos(Sussman&Wisdom1988,1992).Thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(Murray&HolmanLecar,Franklin&Holman2001).However,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10Gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.

Fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(Sussman&WisdomKinoshita&Nakai1996).Thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplaneresent,thelongestnumericalintegrationspublishedinjournalsarethoseofDuncan&Lissauer(houghtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto?initialorbitalelementsandmassesofplanetsarethesameasthoseofourSolarsysteminDuncan&Lissauer‘spaper,butsisbecausetheyconsidertheeffectofpost-main-sequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,nthemassoftheSunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,can&Lissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(VenustoNeptune),whichcoveraspanof?irexperimentsonthesevenplanetsarenotyetprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations.

阅读死在火星上最新章节 请关注舞文小说网(www.wushuzw.info)

上一章 目录 下一页 存书签

热门推荐