死在火星上

《死在火星上》

对火星轨道变化问题的最后解释

上一页 简介 下一页

(本章未完,请点击下一页继续阅读)

Dividethelow-lengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT.

Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+T,thenextdatasegmentrangesfromti+δT≤ti+δT+T,whereδontinuethisdivisionuntilwereachacertainnumberNbywhichtn+Treachesthetotalintegrationlength.

WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams.

2.4Errorestimation

2.4.1Relativeerrorsintotalenergyandangularmomentum

Accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termaveragedrelativeerrorsoftotalenergy(?10?9)andoftotalangularmomentum(?10?11)haveremainednearlyconstantthroughouttheintegrationperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.

Verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsN±xy-planeissettotheinvariantplaneofSolarsystemtotalangularmomentum.(a)TheinitialpartofN+1(t=).(b)ThefinalpartofN+1(t=4.).(c)TheinitialpartofN?1(t=0to?0.0547x109yr).(d)ThefinalpartofN?1(t=?3.9180x109to?3.9727x109yr).Ineachpanel,planets(takenfromDE245).

ThevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationN+,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,elementsofMercury,especiallyitseccentricity,sispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalesresultappearstobeinsomeagreementwithLaskar‘s(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofMercuryonatime-ever,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobaillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements.

Theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsoSection5).

RelativenumericalerrorofthetotalangularmomentumδA/A0andthetotalenergyδE/E0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,horizontalunitisGyr.

Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-eprecision.

2.4.2Errorinplanetarylongitudes

SincethesymplecticmapspreservetotalenergyandtotalangularmomentumofN-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.stimatethenumericalerrorintheplanetarylongitudes,omparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmucthispurpose,(1/64ofthemainintegrations)spanning3x105yr,startingwiththesameinitialconditionsasintheN?onsiderthatthistestintegrationprovidesuswitha‘pseudo-true’t,weparethetestintegrationwiththemainintegration,N?theperiodof3x105yr,weseeadifferenceinmeananomaliesoftheEarthbetweenthetwointegrationsof?0.52°(inthecaseoftheN?1integration).Thisdifferencecanbeextrapolatedtothevalue?8700°,about25rotationsofEarthafter5Gyr,sinceilarly,thelongitudeerrorofPlutocanbeestimatedas?12°.ThisvalueforPlutoismuchbetterthantheresultinKinoshita&Nakai(1996)wherethedifferenceisestimatedas?60°.

3Numericalresults–nceattherawdata

3.2Time–frequencymaps

Althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-nsuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(ger198.

Togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–specificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskar‘s(1990,1993)frequencyanalysis.

Atypicalexampleofthetime–frequenc,whichshowsthevariationofperiodicityintheeccentricityandinclinationofEarthinN+ig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN+snearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement.

4.2Long-termexchangeoforbitalenergyandangularmomentum

Wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,dHareequivalenttothep

Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)chart.

Weperformthereplacement,andconnectallthegrey-scale(orcolour)horizontalaxisofthesenewgraphsshouldbethetime,i.startingtimesofeachfragmentofdata(ti,wherei=1,…,n).Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements.

WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedeposedintofrequencyponentsisterriblyhuge(severaltensofGbytes).

对火星轨道变化问题的最后解释 (第2/3页)

mplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)numberofmaximumiterationswesetinHalley‘smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.

Theintervalofthedataoutputis200000d(?547yr)forthecalculationsofallnineplanets(N±1,2,3),andabout8000000d(?21903yr)fortheintegrationoftheouterfiveplanets(F±).

Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,

Inthissectionwebrieflyreviewthelong-termstabilitorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.

3.1Generaldescriptionofthestabilityofplanetaryorbits

First,webrieflylookatthegeneralcharacterofthelong-interestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-ecanseeclearlyfromtheplanarorbitalconfigurationsshowninFigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,solidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).Thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.

阅读死在火星上最新章节 请关注舞文小说网(www.wushuzw.info)

上一页 目录 下一页 存书签

热门推荐