(本章未完,请点击下一页继续阅读)
Dividethelow-lengthofeachdatasegmentshouldbeamultipleof2inordertoapplytheFFT.
Eachfragmentofthedatahasalargeoverlappingpart:forexample,whentheithdatabeginsfromt=tiandendsatt=ti+T,thenextdatasegmentrangesfromti+δT≤ti+δT+T,whereδontinuethisdivisionuntilwereachacertainnumberNbywhichtn+Treachesthetotalintegrationlength.
WeapplyanFFTtoeachofthedatafragments,andobtainnfrequencydiagrams.
2.4Errorestimation
2.4.1Relativeerrorsintotalenergyandangularmomentum
Accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termaveragedrelativeerrorsoftotalenergy(?10?9)andoftotalangularmomentum(?10?11)haveremainednearlyconstantthroughouttheintegrationperiod(Fig.1).Thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.
Verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsN±xy-planeissettotheinvariantplaneofSolarsystemtotalangularmomentum.(a)TheinitialpartofN+1(t=).(b)ThefinalpartofN+1(t=4.).(c)TheinitialpartofN?1(t=0to?0.0547x109yr).(d)ThefinalpartofN?1(t=?3.9180x109to?3.9727x109yr).Ineachpanel,planets(takenfromDE245).
ThevariationofeccentricitiesandorbitalinclinationsfortheinnerfourplanetsintheinitialandfinalpartoftheintegrationN+,thecharacterofthevariationofplanetaryorbitalelementsdoesnotdiffersignificantlybetweentheinitialandfinalpartofeachintegration,atleastforVenus,elementsofMercury,especiallyitseccentricity,sispartlybecausetheorbitaltime-scaleoftheplanetistheshortestofalltheplanets,whichleadstoamorerapidorbitalesresultappearstobeinsomeagreementwithLaskar‘s(1994,1996)expectationsthatlargeandirregularvariationsappearintheeccentricitiesandinclinationsofMercuryonatime-ever,theeffectofthepossibleinstabilityoftheorbitofMercurymaynotfatallyaffecttheglobaillmentionbrieflythelong-termorbitalevolutionofMercurylaterinSection4usinglow-passfilteredorbitalelements.
Theorbitalmotionoftheouterfiveplanetsseemsrigorouslystableandquiteregularoverthistime-span(seealsoSection5).
RelativenumericalerrorofthetotalangularmomentumδA/A0andthetotalenergyδE/E0inournumericalintegrationsN±1,2,3,whereδEandδAaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,horizontalunitisGyr.
Notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-eprecision.
2.4.2Errorinplanetarylongitudes
SincethesymplecticmapspreservetotalenergyandtotalangularmomentumofN-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.stimatethenumericalerrorintheplanetarylongitudes,omparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmucthispurpose,(1/64ofthemainintegrations)spanning3x105yr,startingwiththesameinitialconditionsasintheN?onsiderthatthistestintegrationprovidesuswitha‘pseudo-true’t,weparethetestintegrationwiththemainintegration,N?theperiodof3x105yr,weseeadifferenceinmeananomaliesoftheEarthbetweenthetwointegrationsof?0.52°(inthecaseoftheN?1integration).Thisdifferencecanbeextrapolatedtothevalue?8700°,about25rotationsofEarthafter5Gyr,sinceilarly,thelongitudeerrorofPlutocanbeestimatedas?12°.ThisvalueforPlutoismuchbetterthantheresultinKinoshita&Nakai(1996)wherethedifferenceisestimatedas?60°.
3Numericalresults–nceattherawdata
3.2Time–frequencymaps
Althoughtheplanetarymotionexhibitsverylong-termstabilitydefinedasthenon-existenceofcloseencounterevents,thechaoticnatureofplanetarydynamicscanchangetheoscillatoryperiodandamplitudeofplanetaryorbitalmotiongraduallyoversuchlongtime-nsuchslightfluctuationsoforbitalvariationinthefrequencydomain,particularlyinthecaseofEarth,canpotentiallyhaveasignificanteffectonitssurfaceclimatesystemthroughsolarinsolationvariation(ger198.
Togiveanoverviewofthelong-termchangeinperiodicityinplanetaryorbitalmotion,weperformedmanyfastFouriertransformations(FFTs)alongthetimeaxis,andsuperposedtheresultingperiodgramstodrawtwo-dimensionaltime–specificapproachtodrawingthesetime–frequencymapsinthispaperisverysimple–muchsimplerthanthewaveletanalysisorLaskar‘s(1990,1993)frequencyanalysis.
Atypicalexampleofthetime–frequenc,whichshowsthevariationofperiodicityintheeccentricityandinclinationofEarthinN+ig.5,thedarkareashowsthatatthetimeindicatedbythevalueontheabscissa,theperiodicanrecognizefromthismapthattheperiodicityoftheeccentricityandinclinationofEarthonlychangesslightlyovertheentireperiodcoveredbytheN+snearlyregulartrendisqualitativelythesameinotherintegrationsandforotherplanets,althoughtypicalfrequenciesdifferplanetbyplanetandelementbyelement.
4.2Long-termexchangeoforbitalenergyandangularmomentum
Wecalculateverylong-periodicvariationandexchangeofplanetaryorbitalenergyandangularmomentumusingfilteredDelaunayelementsL,G,dHareequivalenttothep
Ineachfrequencydiagramobtainedabove,thestrengthofperiodicitycanbereplacedbyagrey-scale(orcolour)chart.
Weperformthereplacement,andconnectallthegrey-scale(orcolour)horizontalaxisofthesenewgraphsshouldbethetime,i.startingtimesofeachfragmentofdata(ti,wherei=1,…,n).Theverticalaxisrepresentstheperiod(orfrequency)oftheoscillationoforbitalelements.
WehaveadoptedanFFTbecauseofitsoverwhelmingspeed,sincetheamountofnumericaldatatobedeposedintofrequencyponentsisterriblyhuge(severaltensofGbytes).
对火星轨道变化问题的最后解释 (第2/3页)
mplecticmaptogetherwiththethird-orderHalleymethod(Danby1992)numberofmaximumiterationswesetinHalley‘smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.
Theintervalofthedataoutputis200000d(?547yr)forthecalculationsofallnineplanets(N±1,2,3),andabout8000000d(?21903yr)fortheintegrationoftheouterfiveplanets(F±).
Althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,
Inthissectionwebrieflyreviewthelong-termstabilitorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.
3.1Generaldescriptionofthestabilityofplanetaryorbits
First,webrieflylookatthegeneralcharacterofthelong-interestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-ecanseeclearlyfromtheplanarorbitalconfigurationsshowninFigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,solidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).Thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.
阅读死在火星上最新章节 请关注舞文小说网(www.wushuzw.info)



